The Effect of Pose on Facial Expression Recognition
نویسندگان
چکیده
Research into facial expression recognition has predominantly been based upon near frontal view data. However, a recent 3D facial expression database (BU-3DFE database) has allowed empirical investigation of facial expression recognition across pose. In this paper, we investigate the effects of pose from frontal to profile view on facial expression recognition. Experiments are carried out on 100 subjects with 5 yaw angles over 6 prototypical expressions. Expressions have 4 levels of intensity from subtle to exaggerated. We evaluate features such as local binary patterns (LBPs) as well as various extensions of LBPs. In addition, a novel approach to facial expression recognition is proposed using local gabor binary patterns (LGBPs). Multi class support vector machines (SVMs) are used for classification. We investigate the effects of image resolution and pose on facial expression classification using a variety of different features.
منابع مشابه
Facial Expression Recognition Based on Structural Changes in Facial Skin
Facial expressions are the most powerful and direct means of presenting human emotions and feelings and offer a window into a persons’ state of mind. In recent years, the study of facial expression and recognition has gained prominence; as industry and services are keen on expanding on the potential advantages of facial recognition technology. As machine vision and artificial intelligence advan...
متن کاملHybridization of Facial Features and Use of Multi Modal Information for 3D Face Recognition
Despite of achieving good performance in controlled environment, the conventional 3D face recognition systems still encounter problems in handling the large variations in lighting conditions, facial expression and head pose The humans use the hybrid approach to recognize faces and therefore in this proposed method the human face recognition ability is incorporated by combining global and local ...
متن کاملFacial Expression Recognition Based on Anatomical Structure of Human Face
Automatic analysis of human facial expressions is one of the challenging problems in machine vision systems. It has many applications in human-computer interactions such as, social signal processing, social robots, deceit detection, interactive video and behavior monitoring. In this paper, we develop a new method for automatic facial expression recognition based on facial muscle anatomy and hum...
متن کاملLocal gradient pattern - A novel feature representation for facial expression recognition
Many researchers adopt Local Binary Pattern for pattern analysis. However, the long histogram created by Local Binary Pattern is not suitable for large-scale facial database. This paper presents a simple facial pattern descriptor for facial expression recognition. Local pattern is computed based on local gradient flow from one side to another side through the center pixel in a 3x3 pixels region...
متن کاملThe Effectiveness of Cognitive Empowerment of Mental Conditions in the Recognition of Facial Expression of Emotions in Addicts
Objective: The aim of this study was to investigate the effectiveness of cognitive empowerment of mental states in the recognition of facial expression of emotions in substance dependent individuals. Method: The present study employed a quasi-experimental design with pretest/posttest design and control group. A total of 30 addicts within the same age range, education level, and employment statu...
متن کاملImproving LNMF Performance of Facial Expression Recognition via Significant Parts Extraction using Shapley Value
Nonnegative Matrix Factorization (NMF) algorithms have been utilized in a wide range of real applications. NMF is done by several researchers to its part based representation property especially in the facial expression recognition problem. It decomposes a face image into its essential parts (e.g. nose, lips, etc.) but in all previous attempts, it is neglected that all features achieved by NMF ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009